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The temperature field of a stationary glow discharge in a gas-discharge chamber is 
investigated by using modelling of the heat transfer processes. The solution of the 
problem was obtained on the basis of an asymptotic expansion of the equations. 

Definite successes have been achieved in recent years in the area of producing electrical 
discharge lasers [i], however, up to now the theoretically computed powers have not been 
successfully yielded. The main obstacle is the development of different kinds of instabili- 
ties in the glow discharge and, consequently, the transition of the glow into an arc dis- 
charge. The temperature-overheating instability [2, 3] is most widespread. The present 
paper is devoted to clarification of one of the possible reasons for its origin. 

COMPUTATION SCHEME 

Let us consider the heat transfer in a discharge gap under the assumption of stationarity 
of the gasdynamic flow and heat transfer. The rational basis for the general construction of 
the gasdynamic contour is the transverse pumping scheme for which the discharge current and 
the stream velocity are oriented perpendicularly to the laser optical axis [4]. The gas- 
discharge chamber (GDC) section transverse to the flow is a strongly elongated rectangle that 
permits considering the problem quasiplanar. Let us make still another simplifying assumption. 
We shall consider the velocity vector of the gas medium to have just one component u directed 
along the OX axis. We direct the OY axis transverse to the flow. We consider the working 
mixture as an ideal gas. In this case the equations describing the process take the following 

form: 

Motion 

au aP 4 a Ou + o  _ _  Ou pu . . . . .  ~ ~  ~ ,  
Ox ax 3 Ox ~--~-x Oy' ~ Oy 

OP 1 0 Ou 
0 = ~ ~ - - ,  (1)  

by 3 Ox Oy 

(the Stokes hypothesis about the relation between the shear and volume viscosity is used here), 

Energy 

aT 0 aT a aT 
9cp u ~ = ~  + ~ +~O+q,  (2) 

ax Ox Ox Oy Oy 

where 

Ou 

- ~ \ a x ]  + 

Continuity 
a (pu) 

Ox 
=0, (3) 
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Perfect gas state 

P = R*oT. (4 )  

Let us examine the processes described by these equalities in greater detail. The typi- 
cal pumping rates for flow-through lasers are 20-50 m/sec. The discharge chamber size along 
the optical axis is ~i m, the width 0.i m, the discharge zone dimension along the stream is 
0.1-0.5 m, and the gas mixture pressure is 2660-6650 Pa. The gas mixture temperature at the 
entrance to the GDC is usually room temperature. Helium in large quantity is present in the 
working mixture. In this case the Mach number at the GDC entrance will be in the 0.02 ! M0 
< 0.i range, i.e., the gas mixture can be considered incompressible for isothermal flow [5]. 
~et us introduce the dimensionless pressure P = (P - P0)/(p0u~), then (4) can be represented 
in the form 

9T = p0To (1 q- MgVoP), (5 )  

where Y0 = cp/cv and all the quantities with subscript 0 are taken at the GDC entrance. We 
have therefore obtained a formal expansion of the equation of state in the Mach number. It 
can be considered to M~ accuracy that 

pT = A = const. ( 6 )  

For further simplification of the problem we assume that p, X, cp are independent of the 
temperature in the temperature band. Now, using the boundary layer approximation and the 
condition M 0 << 1 we obtain [6] 

Ou OP 02u OP ~ 02u 
9u . . . .  - t -~  - - ,  - - =  - - ,  

Ox Ox Oy z Oy 3 OxOg 

OT 02T 
Ocp u ~  = ~  + q .  

Ox Oy 2 (7) 

The system (3), (6) and (7) is closed. Substituting the appropriate boundary conditions, 
we can solve it and obtain the velocity and temperature field distributions. It is suffi- 
cientlycomplicated to solve such a system, consequently, we try to obtain an approximate 
solution. 

We consider, for the approximate characteristics of the solutions, that the energy de- 
livered by using a heat source is much less than the initial energy per unit mass of the 
gas mixture. Indeed, the initial temperatue is T o % 300 K while heating is realized at 
AT 0 ~ 100"K therefore, AT/T 0 ~ 0.3. Let us represent the source function in the form of the 
asymptotic series 

q = qo + ql + q~ + - . - ,  ( 8 )  

where qo = 0 and the remaining terms satisfy the inequalities ql >> q2 >> q3--. Moreover, 
the inequality qld/(P0Cpu0T0) << i is satisfied for ql. We represent all the remaining func- 
tions analogously to (8). Now retaining only the zeroth terms, we obtain the following 
equations for the isothermal flow 

_ _  0 2 U o  �9 OUo = 0 ,  9o=COnSt, T o=cons f ,  OP~ = 0 ,  OPo = ~  (9 )  
Ox Oy Ox Oy 2 

The solution has the form 

dPo B, Uo= _B--:B--y(d--y), B = c o n s t > 0 ,  (10)  
dx 2~ 

We impose  a p e r t u r b a t i o n  on t h e  f l o w  by u s i n g  c o n n e c t i o n  o f  t h e  s o u r c e  q l .  F i n a l l y ,  a f t e r  
taking account of the equations for the zeroth approximation we obtain an equation for the 
temperature perturbation 

OT~ 02T1 
cp p0Uo - -  = ~ + ql. (11)  

Ox @2 
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Fig. 1. Temperature distribution across the 
stream as a function of the distance to the 
entrance to the discharge chamber: i) at a 
distance of 0.1th the discharge chamber 
length; 2) 0.5th the length; 3) at the end 
of the chamber; solid curves yield the 
temperature distribution in the case of homo- 
geneous heat liberation, and the dashes when 
heat liberation is given by (12) (a constant 
temperature is given at the wall). 
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Fig. 2. Temperature distribution across the stream at a distance 
of 0.1th the discharge chamber length from the entrance (I), 0.Sth 
the length (2), at the end of the chamber (3); the heat liberation 
is given by (i0) for the solid lines, and by (13) for the dashes 
(constant heat elimination is given at the wall). 

Fig. 3. Temperature distribution across the stream at a 0.1th the 
length of the discharge chamber from the entrance (I), at 0.Sth the 
length (2), at the chamber end (3); heat elimination for the solid 
lines is two times less than for the dashes, heat liberation is 
given by (12) (constant heat elimination is given at the wall). 

NUMERICAL COMPUTATION OF THE TEMPERATURE FIELD 

Equation (II) is reduced to dimensionless form by standard means and is solved numerically. 
The change in temperature T I is given in all the figures in fractions of the initial tempera- 
ture T 0. It is initially assumed that a constant temperature is given at the walls while 
heat liberation is identical in the whole volume. Then a more correct problem was. posed when 
the heat liberation per unit volume has the form 

q=qo(3 2Y / 0,03 .,' y ~0 '03;  Q=Qo, 0 , 0 3 < y < 0 , 9 7 ;  

(12) 
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It is seen from Fig. 1 that even at the beginning of the discharge chamber an elevated 
temperature zone exists near the wall. Measurement is performed from the wall in fractions 
of the transverse chamber size. The temperature maximum grows as the gas mixture flows 
through the chamber, where utilization of the more correct heat liberation distribution will 
result in a still greater increase inthe maximum and its approximation to the wall. The 
temperature distribution in the case of giving constant heat elimination from the wall is 
shown in Fig. 2. The case when the source distribution is 

e=Qo(2 0,05Y ), y~<o,05; Q=Qo, 0,05<y<0,95; 
Q=Qo(1 y--0,95 ) 

0,05 , y />  0,95 (13) 

is shown by dashed lines. It is seen from Fig. 2 that an increase in the heat liberation 
near the wall results in raising the maximum temperature. In real systems the heat liberation 
zone is still narrower and more steep [i], which should apparently result in a still greater 
temperature difference between the center of the stream and the boundary layer. Unfortunately, 
a further increase in heat liberation near the wall will already result in spoiling the con- 
dition under which the equations have been deduced although the qualitative behavior of the 
temperature distribution curves is sufficiently conceivable from the above. The temperature 
distributions as a function of the heat elimination are represented in Fig. 3. 

Summarizing, it can be said that the presence of a boundary layer results in a much 
stronger temperature rise occurring near the wall than at the center in the gas of heat libera- 
tion in a gas stream. This agrees qualitatively withexperimental data for GDC [7]. Such a 
temperature field inhomogeneity can contribute to the development of a temperature-overheating 
instability. 

NOTATION 

u is the stream velocity; p is the stream density; x is the coordinate along the flow; P 
is the static pressure in the stream; V is the viscosity coefficient; cp is the specific heat 
for constant pressure; T is the temperature; ~ is the heat conduction coefficient; q is the 
heat source function; R* is the reduced gas constant; M is the Mach number; ao is the speed 
of sound at the entrance to the discharge chamber; d is the distance between electrodes, and 
y is the coordinate across the flow. 
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